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Spatially modulated phases in MNNDI (axial antisymmetrical 
nearest-neighbour double Ising) models 
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AbstracL llir anlisynimctrical inleractinn lrelween nearest-neighlnurs in a statistical 
laltice model willi WO king variables mn dahilize the long-period modulations of the 
order pamnieter. l l i e  nnge of stability of phases with lhe modulation period up to 
13 lattice constants WAS found numerically in Uie molecular-Geld approximation. The 
model is supposed to =plain llie mechanism of transilions to long-period as well as 
incommrnwralr slmcturrs in A'A"BX4 -1ype mmp3unds. 

1. Introduction 

The double Ising model with two variahles (r = *I and T = f l  was proposed some 
years ago [I, 2) for the interpretation of structural phase transitions in a number of 
compounds of a general chemical formula A'A"BX.,. Ferroelectric and ferroelastic 
transitions in these compounds, also involving long-period modulations, are supposed 
to result from various orientational ordcrings of BX, groups. There are four possible 
orientations of each BX, tetrahcdron in the environment of A atoms, labelled jointly 
hy the king variables (r (positions of the rctrohcdron with one of apices up or down 
the hexagonal axis) and T (turns to the right or left about this axis). Symmetry implies 
the most general form of nearest neighhour (NN) interactions on the hexagonal Close- 
packed (HCP) lattice to be 

M H = J o;nj t ~i' r iT j  -t L m i T i v j T ,  + aiuj (Ti - r j )  
NN in N N  i n  N N  in " i t ,  

t J' m ; n j  t A.' rirj t L' (rir,ujrj 

M' + -7 2 

NN out NN ocit N N  out 

(1) TiT j  (0; - Oj)  
N N  oat 

where 'NN in' and 'NN out' denote two kinds of nearest neighbours lying in and out 
of the hexagonal plane, respectively. 

Symmetrical NN interactions ( J ,  Ii', L ,  J ' ,  ti", L') stabilize orderings with modu- 
lation period two at the most, and the model with only these interactions was suc- 
cessfully applied to the interpretation of all experimentally observed crystallographic 
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structures with up to four formula units per elementary cell [l, 21. In a recent paper 
[3] it has been shown that the out-of-plane antisymmetrical interaction M’ can stabi- 
lize ordering modulations of any period length along the hexagonal axis. Accordingly, 
the model is also able to explain the various long period as well as incommensurate 
structures obsewed in the considered class of compounds 14, SI. Because interactions 
between NN are usually much stronger than those between next-nearest ones, it is 
natural to suppose that our model is more physically justified than a modified A N ” l  
(axial next-nearest-neighbour Ising) model [GI and a version of ELRII (effectively 
long-range interacting Ising) model [7] hitherto used for an explanation of modulated 
phases in A’A”BX,-type compounds. The in-plane antisymmetrical interaction A4 is 
expected to explain the double-k modulation in the hexagonal plane observed at high 
temperatures in LiKSO, 141. 

‘Ib follow the tradition of several-letter abbreviations we propose to call a statis- 
tical model involving the out-of-plane hf’ term, the AANNDI (axial antisymmetrical 
nearest-neighbour double Ising) model, and that involving the in-plane M term, the 
P A “ D l  (planar antisymmetrical nearest-neighbour double Ising) model. In a previous 
paper 131 only the existence of long-period modulated phases in the AA”I model 
was shown. Here we present more details of the phase diagram found numerically in 
the molecular-field approximation (MFA). 

M Kuizyiski and M Bflnkowiak 

2. Physical origin of antisymmetrical interactions 

Formally, the existence of antisymmetrical interactions results from the lack of the 
centre of symmetry for NN pairs on the HCP lattice. The strengths of these interactions 
in the case of a rigid lattice is determined by purely electrostatic interactions between 
BX, octopoles. In figure I(a) two configurations of an NN pair of tetrahedra in 
the hexagonal plane are shown, one with 7, = +1, T~ = -1, and the other with 
r, = -1, r2 = +l. It is obvious that, notwithstanding that 7,r2 = -1 in both cases, 
the electrostatic energy of the first configuration differs from that in the second. The 
simplest term describing the energy difference is ( r1 - T~), but it cancels with other 
such terms after summation along the whole chain of tetrahedra. The translational 
symmetry of the chain can be destroyed due to particular a-orderings which yield 
various signs of the products u i ~ i + l  for subsequent pairs. Consequently, it is only 
the antisymmetrical interaction of the form u,(r2(r, - T ~ )  that discriminates between 
energies of both configurations and, simultaneously, may not cancel after summation. 

Similarly, in figure l(b) two configurations are shown of an NN pair of tetrahedra 
out of the hexagonal plane. Their electrostatic energy is different again and can 
be distinguished only by the antisymmetrical interaction of the form T ~ T ~ ( ( T ,  - a*), 
possibly not cancelling after summation. 

3. Simplifications and annlytical results 

Because of the complex topoloby of the HCP lattice and because our goal is to 
analyse the effects of the out-of-plane interaction M’, possibly, in relation to the 
k ing  interactions J’ and K‘, we consider the mean-field free energy of Hamiltonian 
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Figure L Two mnfiguntions of hw pain of BX, tetrahedra in he hexagonal plane (U) 

and out of the hexagonal piane (b), whose energies diKcr by the lem of antisymmetrical 
intcmclion $ M a l o ?  (TI - 7 2 )  (a) and fM ' r l r l  (cl - el) (b). Notation or ayes as 
in [I]. 

(1) in the form 

Here the index 1 labels the successive parallel planes, and cr,. T, and w, are wlues 
of the (normalized to unity) layer order parameters: 

where the index p rum over all N sites in a given layer. The effective parameters j, 
l? and & depend not only on the number of NNS and parameters J', I(' and M', 
respectively, but also on the remaining parameters of Hamiltonian (1) and, moreover, 
on temperature. We are, however, not concerned with a particular form of such a 
dependence here. 

The ground-state phase diagram for our model is given in figure Z(0).  We consider 
it to be exact since our MFA result coincides with the exact solution (obtained with 
the aid of the transfermatrix method) of a corresponding one-dimensional model [3 ] .  
Tw limiting cases can be discussed analytically hy solving linearized molecular- 

field equations. 

(i) The case 2 < j .  In the absence of coupling there is a continuous phase 
transition at the temperature 

IZT, = 2 j  
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Figure 2 Ground-state phase diagram for j > 0 (a) and the m s s  section of a Knite- 
temperature phase diagram for li = 0 (h). ?he symbol ( n i v )  U w d  to denote a phase 
with the modulnlion p'nod t n  in Ute pnnmetcr o and the modulation period 11 in the 
pmmeter t (trr, ri  = 0 m e "  kick of appropriate ordering). 7he fuff and tmken l ina 
mrrespond to mntinuous nnd discontinuous piiase transitions, mpectively. 

from the para to antiferro-ordered in the parameter U phase. Well below T, one 
can assume 0, = ( -1) '  so the r-ordering is described by the effective free energy 

t 4kT [( 1 t rl) I tl( 1 -k T i )  + ( 1 - Tt ) Ill( 1 - Ti)] . (5) 
1 

It can be Seen directly that for fi > this interaction stabilizes a phase with 
the modulation period 4 with a pattern of rurdering (. , . + + - - + + - -. . .). 
In gencral, the temperature Or a continuous transition to any phase ordered in T is 
given by 

.. , <  . ,  ~~ 

k ~ ,  =2J1?2cosaq+f i ? s io?q  (6) 

with q chosen to maximize this expression, i.e. q = 0 for k < -M, q = n/Z for 
- M  < I? < M, and q = T for I;- > ii. 

(ii) The case hi >> 1 wds discussed in (31. At the temperature 

..... ~ 

IZT,, = - 1;' c.os q + 4 ~ 2  cos? q t $12 sin? q (7) 

there is a continuous phase transition from the para phase to the phase simultaneously 
ordered in n and T. ?b maximize expression (7), the modulation vector has to 
be q = 0 for h' < -h/d and q = x for I< > A?/&. Within the range 
- A ? / f i  < I? < a/&!he maximizing mlue of q varies continuously from 0 to T ,  

which means that point., IC = & f f / f i ,  corresponding to temperature kT = fi 0, 
are Lifshitz points. 
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4. Numerical phase diagram 

The analysis of the limiting cases has heen carried out under the assumption that all 
phase transitions are continuous. This assumption can, however, no longer be valid 
in an intermediate region. Indeed, the numerically found finite-temperature phase 
diagram in I? = 0 plane, given in figure 2(b), shows that, for finite values of M / j ,  
the transition to phase (24) becomes discontinuous. In figure 3 three representative 
cross sections of finite-temperature phase diagrams with M / j  = constant are given. 
Only half-planes are shown, as the free energy (2) has a gauge symmetry 

K,T, 3 -k,(-l)%l. (8) 

It is seen that for M / j  = 0.5, when transitions are still continuous, the numerical 
phase diagram agrees almost exactly with the analysis done in (i). The opposite 
limit, (ii), is, however, not reachcd even for = 4.0. The discontinuity of the 
transition between the para phase (00) and the phase with q = 2n/4 (24) results in 
a considerable reduction of the region of stability of phases with q # 2n/4, denoted 
in figure 3(c) as MP. In accordance with figure 3(c) we would like to note an mistake 
in the determination of the line separating phase (01) from MP in 131. 

Figure 3. - p e e  ROSS seclionspf [!le finite-lemperalure phase diagram will1 $ f / j  = 0.5 
(a). M f J  = 1144 (6). an? M / J  = 4.0 (c), Notation as in figure 2 Phases (01) and 
(21) occur for I< < 0; tor fi > 0. rh~y a n  nplaced ly phases (02) and (22). lespeclively. 
n i e  area denoted ly MP is a region of rlabilily 6f Inng-period modulated phases. 

Stability regions of phases with particular modulation vectors are shown in figure 4. 
The phase diagram has been constructed hy comparing the free energies calculated for 
the solutions of thirteen systems of coupled nonlinear molecular-field equations, each 
for 3n (n = 1,2,. . . , I : % )  variables cr,, rl and w, ( I  = 1,2,. . . , n) satisfying periodic 
conditions . . .,+,, = . . .!. For each 2 1 ,  the molecular-field equations have been solved 
numerically by means of an iteration procedure. As the starting spin configuration a 
sinusoidal structure, the self-consistent solution at a nearby temperature or (for low 
enough temperatures) the exact solution at the ground state have been used. Usually, 
the self-consistency has been obtained after some hundred iterations, but for certain 
values of n and T the convergence was very slow and near 50000 iterations were 
needed. For some values of li' and T the thirteen systems of equations have had 
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up to about 200 different solutions. It  should he pointed out that the long-period 
solutions do not occur in the previously applied 111 approximation of the statistical 
independence of the cr and 7 subsystems 

M Kurzynski and M Barlkowiak 
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Figure 4. Enlnrgenirnt of pan of llie dingnm in figure Kc). Stability regions o l  the 
pliaxs wit11 pxticular modulation vectors (given in units of the reciprocal lattice vector 
2n) a!" inJiclted.*Tlie presented values of tlie modulalion vector correspond to Uie 
clse li < 0; lor li > 0. lliey should IR replaced by lhe appmpriale mmplemenls to 
4. All lransilioni except ilia1 to llie para phase, are discontinuous. 

To complete the phase diagram of modulated phases an additional analysis of 
molecular-field equations in the soliton approximation is needed, as well as a low- 
temperature analysis of phase branching [SI. Studies of this kind using AANNDI model 
are in progress. We also expect to gct interesting results in the molecular-field theory 
Of the PANNDI model. 
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